&JNT

University of North Texas

CSCE 2110
Foundations of Data Structures

Sorting

CSCE 2110 - Foundations of Data Structure

Content

+ Comparison-based sorting algorithms:
o Insertion sort
o Selection sort
o Heapsort

o Merge sort

o Quick sort

+ Integer sorting (optional):
o Buckeft sort
o Radix sort

CSCE 2110 - Foundations of Data Structure

Sorting

+ Given a set (container) of n elements:
o e.g., array, set of words, etc.

+ Suppose there is an order relation that can be set
across the elements

* Goal: Arrange the elements in a certain order
o e.g., ascending/descending orders

CSCE 2110 - Foundations of Data Structure

Sorting

Given a set (container) of n elements:
o e.g., array, set of words, etc.

Suppose there is an order relation that can be set
across the elements

Goal: Arrange the elements in a certain order
o e.g., ascending/descending orders

Before sorting: 1 232 569 8 10 100

CSCE 2110 - Foundations of Data Structure

Sorting

Given a set (container) of n elements:
o e.g., array, set of words, etc.

Suppose there is an order relation that can be set
across the elements

Goal: Arrange the elements in a certain order
o e.g., ascending/descending orders

Before sorting: 1 232 569 8 10 100
After sorting: 1 2 8 9 10 23 56 100

CSCE 2110 - Foundations of Data Structure

Importance of Sorting

Why don't CS profs ever stop talking about sorting?

o Computers spend a lot of time sorting, historically 25%
on mainframes

o Sorting is the best studied problem in computer
science, with many different algorithms known

o Most of the interesting ideas we will encounter in the
course can be taught in the context of sorting, such as
divide-and-conquer, randomized algorithms, and lower
bounds

CSCE 2110 - Foundations of Data Structure

Stable Sorting

A property of sorting

If a sort guarantees the relative order of equal
items stays the same, then it is a stable sort

Before sorting: 74, 6,7,,5,1,2,73 -5 (subscripts added

for clarity)
After sorting: -5,1,2,5,6,7,,7,, 73 (result of stable
sort)

CSCE 2110 - Foundations of Data Structure

In Place Sorting

Sorting of a data structure does not require any
external data structure for storing the
infermediate steps

The amount of extra space required to sort the data
is constant with the input size

CSCE 2110 - Foundations of Data Structure

Insertion Sort

Insertion sort: orders a list of values by repetitively
inserting a particular value into a sorted subset of
the list

More specifically:

1) consider the first item to be a sorted sub list of
length 1

2) insert the second item into the sorted sub list,
shifting the first item if needed

3) insert the third item into the sorted sub list, shifting
the other items as needed

4) repeat until all values have been inserted into their
proper positions

CSCE 2110 - Foundations of Data Structure

Insertion Sort

template <class Item>

void insertion_sort(Item data[], size t n) {
size t i, Jj;
Item temp;

if(n < 2) return; // nothing to sort!!

for(i = 1; i < n; ++i)
{
// take next item at front of unsorted part of array
// and insert it in appropriate location in sorted part of array
temp = data[i];
for(j = i; data[j-1] > temp and j > @; --3)
data[j] = data[j-1]; // shift element forward

data[j] = temp;
}

CSCE 2110 - Foundations of Data Structure

Insertion Sort: Example

« Sorting: 3,9, 6,1, 2 using insertion sort

CSCE 2110 - Foundations of Data Structure

Insertion Sort: Example

« Sorting: 3,9, 6,1, 2 using insertion sort

3 9 6 1 2
3 is sorted.
Shift nothing. Insert 9. ﬂ

3 9 —P» 6 1 2
3 and 9 are sorted.
Shift 9 to the right. Insert 6. f_l

3—m—P» 6—» 9 —» 1 2
3, 6, and 9 are sorted. |
Shift 9, 6, and 3 to the right. Insert 1. *

1 33— 6 —>»p 9—>» 2
1, 3, 6, and 9 are sorted. |
Shift 9, 6, and 3 to the right. Insert 2. *

1 2 3 6 9

CSCE 2110 - Foundations of Data Structure

Insertion Sort Time Analysis

In O-notation, what is:

o Worst case running time for n items?
o Best case running time for n items?

CSCE 2110 - Foundations of Data Structure

Insertion Sort Time Analysis

In O-notation, what is:

o Worst case running time for n items?
o Best case running time for n items?

Steps of algorithm:

Outer loop:
O(n)

Inner loop:
O(n)

CSCE 2110 - Foundations of Data Structure

Selection Sort

Basic idea:
1) Find the smallest element in the array
2) Exchange it with the element in the first position

3) Find the second smallest element and exchange it with
the element in the second position

4) Continue until the array is sorted

CSCE 2110 - Foundations of Data Structure

Selection Sort

SELECTION-SORT(A):
n & length[A]
forj<1lton-1
do smallest & |
fori<j+1ton
do if A[i] < A[smallest]
then smallest < i
exchange A[j] €2 A[smallest]

CSCE 2110 - Foundations of Data Structure

Selection Sort: Example

- Sorting: 8,4,6,9, 2, 3,1using selection sort

CSCE 2110 - Foundations of Data Structure

Selection Sort: Example

« Sorting: 8,4,6,9,2,3,1using insertion sort

CSCE 2110 - Foundations of Data Structure

Selection Sort Time Analysis

It's clearly quadratic:

o The first pass, we search through exactly n -1
elements (no difference between average-case and

worst-case), then swap (constant time)

o Second time, n - 2 elements, thenn - 3, etc.

We get the arithmetic sum (n-1)+(n-2)+(n-3)+..+1= O(n?)

CSCE 2110 - Foundations of Data Structure

Heapsort

Sorting Strategy:
Build Max Heap from unordered array;
Find maximum element A[1];

Swap elements A[n] and A[1]: now max element is at the
end of the array!

Discard node n from heap (by decrementing heap-size
variable)

New root may violate max heap property, but its
children are max heaps. Run max heapify to fix this.

Go to Step 2 unless heap is empty.

CSCE 2110 - Foundations of Data Structure

Heapsort Demo

heap_size=9

CSCE 2110 - Foundations of Data Structure

Heapsort Demo

16 <— not part of heap

MAX_HEAPIFY (A1)

CSCE 2110 - Foundations of Data Structure

Heapsort Demo

14 16 <— not part of heap

MAX_HEAPIFY (A,1)

CSCE 2110 - Foundations of Data Structure

Heapsort Demo

10| |14 | [16 | «<— not part of heap

CSCE 2110 - Foundations of Data Structure

Heapsort Time Analysis

After n iterations the Heap is empty

Every iteration involves a swap and a max_heapify
operation;

Hence it takes O(n log n) time overall

CSCE 2110 - Foundations of Data Structure

Divide and Conquer

Very important technique in algorithm design
o Divide problem into smaller parts
o Independently solve the simpler parts

> Think recursion
» Or potential parallelism

o Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally Divide-
and-Conquer:

o Merge Sort

o Quick Sort

CSCE 2110 - Foundations of Data Structure

Merge Sort

So simple — really, sooooo0 simple

Split the array into two halves
o Sort (using the same merge sort) the first half
o Then, sort the second half

o Then, merge them (since they are ordered sequence, it
should be easy to merge them in linear time into a single
ordered sequence)

CSCE 2110 - Foundations of Data Structure

Merge Sort

Merging two sorted sequences into a single sorted
sequence (in linear time):

How to merge?

Example:
o Sequence A:11,23,40,57,78, 93
o Sequence B: 5,9, 35, 36, 39, 63

CSCE 2110 - Foundations of Data Structure

Merge Sort

Sorting 38, 27,43, 3, 9, 82, 10 using merging sort

CSCE 2110 - Foundations of Data Structure

Merge Sort

Sorting 38, 27,43, 3, 9, 82, 10 using merging sort

X (27|43 3|9|82(10
/ ™,
Y
|3E Zr (43| 3 |Qlﬂlllﬂ|
T e
iy
8|27 42| 3 9|82 10
i o \

TI

|El

B
b e
&
L
LEE]
L
L

10

10
¥ ¥ ¥ f

e
=)
ad
=]
w -
B
ad
Tor]
(mn]
Pt

CSCE 2110 - Foundations of Data Structure

Merge Sort

algorithm mergesort(A, left, right):
if left = right then
mid = [({left + right) / 2]
mergesort(A, left, mid)
mergesort(A, mid + 1, right)

merge(A, left, mid, right)
algorithm merge(A, left, mid, right):
L - A[left .. mid]
R « Almid+1 .. right]
i+«1, j«1, k « left

while i = length(L) and j = length(R) do

if L[i] = R[j] then // Compare and copy
Alk] « L[i]; i+« 1+ 1
else
ALkl « R[j1; j+«~j+1
k«k+1
while i = length(L): // Append remaining L
ALkl « L[i]l; i+« i+ 1; kek+1
while j = length(R): // Append remaining R

ALkl « R[§l; j «j+1; ke«k+1

CSCE 2110 - Foundations of Data Structure

Quick Sort

Pick a "pivot” p (the pivot is a number in the list)
Divide list into two sublists

o One less-than-or-equal-to pivot value

o One greater than pivot value
Sort each sub-problem recursively
Answer is the concatenation of the two solutions

p
_ LN _
h'd YT
numbers less than P numbers greater than p

or equal to P

CSCE 2110 - Foundations of Data Structure

Quick Sort Pseudocode

algorithm quicksort(A, lo, hi): algorithm partition(A, lo, hi):
if lo < hi then pivot = A[lo]

p = partition(A, lo, hi)

quicksort(A, lo, p - 1)

quicksort(A, p + 1, hi)

i=1lo
j=hi+1
loop forever
do
i=1+1
while A[i] < pivot

First do

element is
the pivot

j=3-1
while A[j] > pivot
if i >= j then
break
else
swap A[i] with A[]]
swap A[j] with A[lo]
return j

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

Sorting 7, 2, 8, 3,5, 9, and 6 using quick sort

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

Sorting 7, 2, 8, 3,5, 9, and 6 using quick sort

Pick pivot: - 2 |8 |3 |5 |9 |6

Partition - 2 |8 I3 |5 |9 |6
with cursors A)
< >

2 goes to 8 |3 |5 |9 |6
less-than " A
< >

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

- Sorting 7, 2,8, 3,5, 9, and 6 using quick sort

6, 8 swap > 6 FEEEE E

less/greater-than

t 1
>

3,5 less-than
9 greater-than

Partition done.

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

- Sorting 7, 2,8, 3,5,9, and 6 using merging sort

Put pivot
into final

position.

Recursively
sort each side.

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

Partitioning on
436924312189356

algorithm partition(A, lo, hi):
pivot = A[lo]

i=1lo
j=hi+1
loop forever
do
i=1+1
while A[i] < pivot
do
j=3-1
while A[j] > pivot
algorithm quicksort(A, lo, hi): if 1 >= 3 then
if 1o < hi then break
o . else
p = partition(A, lo, hi) swap A[i] with A[j]
quicksort(A, lo, p - 1) swap A[j] with A[lo]
quicksort(A, p + 1, hi) return j

CSCE 2110 - Foundations of Data Structure

Quick Sort: Example

» Partitioning on
436924312189356

= choose pivot: 436924312189356

= search: 436924312189356
= swap: 433924312189656
= search: 433924312189656
= swap: 433124312989656
= search: 433127312989656
= swap: 433122317989656
= search: 43312231798965 6 (left > right)

= swap withpivot: 133122347989656

CSCE 2110 - Foundations of Data Structure

Quick Sort Time Analysis

Picking pivot: constant time

Partitioning: linear time

Recursion: time for sorting left partition (say of size i) +
time for right (size N - i - 1) + partition time

T(N)=T(@)+T(N - i - 1)+ cN
where i is the number of elements smaller than the pivot

CSCE 2110 - Foundations of Data Structure

Quick Sort Worst Case

Quick Sort is fast in practice but has 8(N?)
worst-case complexity

Pivot is always smallest element, so i = O:

T(N) = T@)+T(N - i - 1)+ cN
= T(N - 1)+ cN
=T(N—=2)+c(N—1)+cN
=T(N = k) +c Xy (N = 0)
= 0(N?)

CSCE 2110 - Foundations of Data Structure

Quick Sort Best Case

* Pivot is always middle element

T(N)=T@G)+T(N—i—1)+¢cN

T(N) = 2T (T) + cN

{ZT(+ ¢cN

N
< 4T +C(ZE+N)

+ceN(1+1+1)

< kT

=2 o= = =

A
o]
h.a
e T e A Y

+ cNlogk = O(NlogN)

CSCE 2110 - Foundations of Data Structure

Dealing with Slow Quick Sort

Randomly choose pivot

o Good theoretically and practically, but call to
random number generator can be expensive

Pick pivot cleverly
o "Median-of-3" rule takes Median(first, middle, last
element elements) as pivot. Also works well

> e.g., Swap Median with either first or last element,
then partition as usual

CSCE 2110 - Foundations of Data Structure

Integer sorting

We've already discussed that (under some more
or less standard assumptions), no sort algorithm
can have a run time better than nlogn

However, there are algorithms that run in linear
time (huh???)

CSCE 2110 - Foundations of Data Structure

Bucket Sort

If all keysareO .. K -1
Have an array of K buckets (linked lists)

Put keys into correct bucket of array
o linear timel

Bucket Sort is a stable sorting algorithm:

o Ifems in input with the same key end up in the
same order as when they began

Impractical for large K

CSCE 2110 - Foundations of Data Structure

Bucket Sort: Example

Key range [O, 9]

7,d r— 1,C - 3,a 719 3,b 7ae

Phase 1: filling the buckets
1, 3a—3b 7d—79—7e
1 1 1

5| [o] |eo
1 2 3 4 5 6 7 8 9

Phase 2: emptying the buckets into the list

CSCE 2110 - Foundations of Data Structure

Bucket Sort Time Analysis

Phase 1 takes 0(n) time

Phase 2 takes O(n + K) time
o Thus bucket-sort is O(n + K)

Very efficient if keys come from a small interval
[0, K -1]

CSCE 2110 - Foundations of Data Structure

Radix Sort

Radix = "The base of a number system”
(Webster's dictionary)

o Alternate terminology: radix is number of bits
needed to represent O to base 1; can say "base 8"
or "radix 3"

Idea: Bucket Sort on each digit, bottom up

CSCE 2110 - Foundations of Data Structure

The Magic of Radix Sort

Input list:
126, 328, 636, 341, 416, 131, 328
Bucket Sort on lower digit:
341,131,126, 636, 416, 328, 328
Bucket Sort result on next-higher digit:
416,126, 328, 328, 131, 636, 341
Bucket Sort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

CSCE 2110 - Foundations of Data Structure

Running Time of Radix sort

n items, d digit keys
How many passes?
How much work per pass?

Total time?

CSCE 2110 - Foundations of Data Structure

Running Time of Radix sort

n items, d digit keys
How many passes? d
How much work per pass? n

Total time? O(dn)

CSCE 2110 - Foundations of Data Structure

Summary

. Best |Average Worst
Insertion sort 0O(n) 0(n2) 0(n?)

Selection sort 0(n2) 0(n2) 0(n?2)

Heapsort O(n log n) O(n log n) O(n log n)

Merge sort O(n log n) O(n log n) O(n log n)

Quick sort O(n log n) O(n log n) 0(n?)

Bucket sort O(n + k) O(n + k) O(n + k)

Radix sort 0(dn) O(dn) O(dn)

CSCE 2110 - Foundations of Data Structure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

